Skip to main content

Structural and Magnetic Properties of Dilute Ca2+ Doped Iron Oxide Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

Undoped and calcium substituted hematite (α-Fe2O3) nanoparticles are synthesized by surfactantdirected co-precipitation and post annealing method. The annealed nanoparticles were found to be in single phase in nature and crystallize in the rhombohedral structure with space group R3c as confirmed by Rietveld refinement of the X-ray diffraction (XRD) data. Average crystallite sizes are calculated to be 20 to 30 nm and 50 to 60 nm for the nanoparticles annealed at 400 and 600 °C respectively. Mössbauer spectra for all the nanoparticles could be fitted with a sextet corresponding to the single magnetic state of the iron atoms in its Fe3+ state in the hematite matrix. The FTIR and Raman spectra of all the samples correspond to specific modes of α-Fe2O3. UV-Vis spectra of annealed samples showed broad peaks in the range of 525–630 nm resulting from spin-forbidden ligand field transition together with the spin-flip transition among the 2t 2g states. The estimated band gap energies were in the range of 1.6 to 1.9 eV which are much lower than the reported values for nano hematite. From the room temperature magnetic hysteresis loop measurements, weak ferromagnetic behavior is observed in all undoped and Ca2+ doped hematite samples. Morin temperature (t M) is calculated to be 257 and 237 K for 1.45% doped samples with particle size 54 and 27 nm respectively. The sample with Ca content of 1.45 wt% when annealed at 400 °C showed that the particles were of different shapes which included both quasi spherical and rod shaped. On annealing the same sample at 600 °C, the nanorods collapsed to form bigger spherical and ellipsoidal particles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more