Skip to main content

Defect Complexes in Carbon and Boron Nitride Nanotubes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented in the Castep code. We found more substantial atomic relaxations in the zig-zag carbon nanotube than the armchair one. We find that the BCBC defect introduced in both zig-zag and armchair carbon nanotubes results in a semimetallic system. Similarly to the carbon nanotubes, the relaxation energies in the zig-zag boron nitride nanotubes are lower than in the armchair system. We find that creating a CBBN in the boron nitride nanotube, changes the system to metallic. The zig-zag configuration is energetically more stable than the armchair one in both the boron-rich and nitrogen-rich environments. The interaction between the carbon impurity and the antisite was investigated: we find that CBBN is preferable in the B-rich environment, and CNNB is preferable in the N-rich environment. We determine that in both zig-zag and armchair systems, BNNB is stable with the heats of formation of −5.77 eV and −8.69 eV, respectively.

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.6488

Publication date: 2012-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more