Skip to main content

Tuning of Magnetic Dipolar Interactions of Maghemite Nanoparticles Embedded in Polyelectrolyte Layer-by-Layer Films

Buy Article:

$105.00 plus tax (Refund Policy)

In this study we report an experimental approach capable of tuning dipolar interactions in hybrid magnetic nanofilms produced via layer-by-layer assembly of positively-charged maghemite nanoparticles and sodium sulfonated polystyrene onto glass and silicon substrates. Morphological and magnetic properties of the as prepared nanofilms were determined by Raman spectroscopy, atomic force microscopy, conventional and SQUID magnetometry. Maghemite nanoparticles form densely packed layers with voids between particles being filled by polymeric material as observed in atomic force microscopy images. Magnetic hysteresis loops and zero-field-cooled/field-cooled magnetization curves reveal a superparamagnetic behavior at room temperature. The energy barrier for the magnetic moment reversal of the nanofilms has been determined from the frequency dependent ac susceptibility and is related to the γ-Fe2O3 nanoparticles concentration used in the colloidal dispersion throughout film fabrication. Variations on the interparticle distances have a direct effect on the interparticle dipolar interactions. A less concentrated colloid gives rise to large separated nanoparticles inside the nanofilm with a consequent reduction on the energy barrier for the magnetic moment reversal. The fabrication process exploring the control of the nanoparticle concentration can thus be used to tune the magnetic dipolar interactions in the nanofilms.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2012-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more