Skip to main content

Magnetic Properties of Hydrogen-Included TiZrNiPd Quasicrystals

Buy Article:

$105.00 plus tax (Refund Policy)

Quasicrystals prepared by rapid quenching of Pd-added TiZrNi ingots were hydrogenated, and effects of hydrogen for magnetic properties were compared with the unhydrogenated ones under magnetic fields from − 10000 to 10000 Oe. The magnetization values obtained from vibrating sample magnetometer (VSM) were analyzed with the combination of powder X-ray diffraction (XRD) data. While its contribution is larger than that of Pd, hydrogen decreases the magnetic moments of both Pd-doped and undoped quasicrystals. As increasing the amount of absorbed hydrogen which is represented by H/M (hydrogen to host metal atom ratio) values from 0 to 1.19, the magnetization values of Ti53Zr27Ni20 quasicrystals measured at 10000 Oe significantly decreased from 0.301 to 0.212 emu/g. A careful analysis of XRD data demonstrated that the reduced interactions of magnetic dipole moments between Ni atoms, as the product of the expansion of the quasilattice constants after hydrogenation, are responsible for the decreased magnetization values in hydrogenated TiZrNiPd quasicrystal samples.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more