Skip to main content

Fabrication and Photovoltaic Properties of Heterostructured TiO2 Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)


One-dimensional heterostructured TiO2 nanowires were successfully fabricated by an electrospinning technique and modified by hydrolysis. We investigated their structure, morphology, chemical composition, and optical properties by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. In the case of the photovoltaic performance, the short-circuit current density and cell efficiency of the DSSCs employing single TiO2TiO2 nanowires and heterostructured TiO2 nanowires improve from 6.90 to 11.38 mA/cm2 and from 2.56 to 4.29%, respectively. The results show that the photoconversion efficiency of the heterostructured TiO2 nanowires could be improved by more than ∼67% compared to that of the single TiO2 nanowires because of the enhanced specific surface area that facilitates dye adsorption.

Document Type: Research Article


Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more