Skip to main content

Fabrication and Photovoltaic Properties of Heterostructured TiO2 Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)


One-dimensional heterostructured TiO2 nanowires were successfully fabricated by an electrospinning technique and modified by hydrolysis. We investigated their structure, morphology, chemical composition, and optical properties by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. In the case of the photovoltaic performance, the short-circuit current density and cell efficiency of the DSSCs employing single TiO2TiO2 nanowires and heterostructured TiO2 nanowires improve from 6.90 to 11.38 mA/cm2 and from 2.56 to 4.29%, respectively. The results show that the photoconversion efficiency of the heterostructured TiO2 nanowires could be improved by more than ∼67% compared to that of the single TiO2 nanowires because of the enhanced specific surface area that facilitates dye adsorption.

Document Type: Research Article


Publication date: July 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more