Improved Thermal Properties of Graphene Oxide-Incorporated Poly(methyl methacrylate) Microspheres

$113.00 plus tax (Refund Policy)

Buy Article:


Graphene, a single layer of carbon atoms in a two-dimensional lattice, has attracted considerable attention owing to its unique physical, chemical and mechanical properties. In particular, because of its excellent thermal properties such as high thermal conductivity and good thermal stability, graphene has been regarded as a one of the promising candidates for the reinforcing fillers on the polymer composites field. In this study, we prepared the poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposite by a simple solution mixing process, and examined the thermal reinforcing effects of GO on a PMMA matrix. Using thermogravimetric analysis, differential scanning calorimeter, and thermal conductivity meter, we investigated the effects of GO on the thermal properties of PMMA/GO nanocomposites. With 3 wt% of GO loading, the glass transition temperature (Tg) of the PMMA/GO nanocomposite were increased by more than 7°C and the thermal conductivity of which also improved 1.8 times compared to pure PMMA.

Document Type: Research Article


Publication date: July 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more