Skip to main content

Analytic Modeling of a Depletion-Mode Cylindrical Surrounding-Gate Nanowire Field-Effect Transistor

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A compact model for depletion-mode p-type cylindrical surrounding-gate nanowire field-effect transistors (SGNWFETs) is proposed. The SGNWFET model consists of two back-to-back Schottky diodes for the metal-semiconductor (MS) contacts and the intrinsic SGNWFET. Based on the electrostatic method, the intrinsic SGNWFET model was derived from current conduction mechanisms attributed to bulk charges through the center neutral region, in addition to accumulation charges through the surface accumulation region. The authors' previously developed Schottky diode model was used for the M-S contacts. The new model was applied to an advanced design system (ADS), whereby the intrinsic part of the SGNWFET and the Schottky diode were developed using the Verilog-A language. The results of the simulation of the newly developed SGNWFET model reproduced the experiment results considerably well.

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.6385

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more