Skip to main content

Preparation of MoO3/MoS2/TiO2 Composites for Catalytic Degradation of Methylene Blue

Buy Article:

$105.00 plus tax (Refund Policy)

Metastable hexagonal MoO3 microrods were grown from bulk MoS2 and used as support materials for MoS2 and TiO2 nanoparticles. The hybrid composites that consisted of MoO3, MoS2, and TiO2 were prepared at a low temperature using the one-step synthesis method. The crystallinity and morphology of the MoO3/MoS2/TiO2 composites that were prepared using HNO3 and titanium tetraisopropoxide were compared with those of the MoO3/MoS2 composites that were prepared without titanium tetraisopropoxide. Titanium isopropoxide facilitated the formation of the MoO3 microrods from the oxidation of the bulk MoS2. The desired MoO3/MoS2/TiO2 composites were obtained using 0.5 g of bulk MoS2, 3-4 ml of HNO3, and 0.367 ml of titanium tetraisopropoxide. The MoO3/MoS2/TiO2 composites that were treated with ultrasonic waves showed rapid degradation of the methylene blue solution (2×10-4 M) in the dark and good photocatalytic ability under ultraviolet light irradiation. The decomposition of methylene blue depended on the composition of the composite.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more