Skip to main content

Morphology and Properties of Segregated-Network Chemically Converted Graphene-Poly(vinyl chloride) Composite Viet Hung Pham, Thanh Truong Dang, Seung Hyun Hur,

Buy Article:

$105.00 plus tax (Refund Policy)

The poly(vinyl chloride)-chemically converted graphene (PVC-CCG) composite prepared using colloidal blending, filtration and drying, and followed by compression molding at 175°C, exhibited an electrical percolation threshold as low as 0.4 wt% and an electrical conductivity as high as 46.5 S/m corresponding to 4.0 wt% of CCG. The high electrical conductivity of the PVC-CCG composite was the result of minimizing the amount of surfactant using various methods. For example, the PVC latex was prepared using miniemulsion polymerization, and the CCG was synthesized via hydrazine reduction of graphene oxide at ambient temperature in order to diminish the irreversible agglomeration of CCG sheets during reduction. The morphology of the PVC-CCG composite, characterized using scanning electron microscopy in charge contrast mode, revealed that the CCG sheets created a segregated network in the PVC matrix.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more