Skip to main content

Infrared Conductivity and Carrier Mobility of Large Scale Graphene on Various Substrates

Buy Article:

$105.00 plus tax (Refund Policy)

It is known that low-field mobility of graphene depends largely on the substrate material on which it is transferred. We measured Drude optical conductivity of graphene on various substrates and determined the carrier density and carrier scattering rate. The carrier density varies widely depending on the substrate material. However the scattering rate is almost constant, ∼100 cm-1, for 5 different substrates. We calculate carrier mobility of graphene using the two quantities, i.e., carrier density and scattering rate, to find that it agrees with the mobility measured from dc transport experiment. We conclude that substrate-depent mobility of graphene originates from different carrier density but not from the scattering rate.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more