Skip to main content

Effect of Inorganic Nanoparticle Addition to the Hole-Collecting Buffer Layers in Polymer Solar Cells

Buy Article:

$113.00 plus tax (Refund Policy)


We investigated the influence of nickel oxide (NiO) nanoparticles that are incorporated into the hole-collecting buffer layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] on the performance of polymer:fullerene solar cells. To understand the optimum composition of NiO nanoparticles, the composition of NiO nanoparticles was varied from 0 wt% to 23 wt%. Results showed that the optical transmittance was gradually decreased as the NiO content increased. However, the device performance (short circuit current density, fill factor, series resistance, power conversion efficiency) exhibited a two stage trend in a boundary of ∼9 wt% NiO content. This trend was in good agreement with the trend of sheet resistance in the presence of slight discrepancy owing to the different charge transport geometry.

Document Type: Research Article


Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more