Skip to main content

Concentration and Temperature Effect on Controlling Pore Size and Surface Area of Mesoporous Titania by Using Template of F-68 and F-127 Co-Polymer in the Sol–Gel Process

Buy Article:

$105.00 plus tax (Refund Policy)

Mesoporous titania with crystalline pore walls and controlled pore sizes was fabricated through triblock copolymer (pluronic series) templated sol–gel process by changing the copolymer concentration and by adjusting their calcination temperature. Compared with mesoprous silicate, the synthetic condition of mesoporous titania would be sensitive to calcination temperature. Their pore arrangement and pore size depend strongly on the concentration of copolymer used as a template. Their arrangement of pores and specific surface area increases with the increase of calcination temperature up to critical limit, 320 °C. Beyond the critical temperature, the orderness of pores and specific surface area decreases due to the collapse of the pore walls. The specific surface area, pore size and pore orderness can be controlled by optimizing calcination temperature as well as polymer concentration. We demonstrate the mechanism of pore formation and their collapse in the sol–gel synthesis of mesoporous titania.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more