Skip to main content

Aptamer-Based Immunosensor on the ZnO Nanorods Networks

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This paper presents the fabrication and characteristics of a new aptamer-based electrochemical immunosensor on the patterned zinc oxide nanorod networks (ZNNs) for detecting thrombin. Aptamers are single-stranded RNA or DNA sequence that binds to target materials with high specificity and affinity. An antibody-antigen-aptamer sandwich structure was employed to this immunosensor for detecting thrombin. First, hydrothermally grown ZNNs were patterned on the patterned 0.02 cm2 Au/Ti electrodes on a glass substrate by lift-off process. The high isoelectric point (IEP, ∼9.5) of nanostructured ZnO makes it suitable for immobilizing proteins with low IEP. Then 5 μL of the 500 nM antibody was immobilized on the ZNNs electrode. 5 μL of the mixture of 1 μM aptamer labeled by ferrocene (Fc) and thrombin was dropped on the electrode for antibody-antigen binding. The peak oxidation currents of the immunosensors at various thrombin concentrations were measured by using cyclic voltammetry. The peak oxidation current was observed at 340 mV versus Ag/AgCl electrode, and the peak oxidation current increased linearly from 62.26 nA to 354.13 nA with the logarithmic concentration of thrombin in the range from 100 pM to 250 nM. Fabrication of an aptamer-based immunosensor for thrombin detection is a new attempt and the characteristics of the fabricated immunosensors showed that the fabricated aptamer-baded immunosensor worked electrochemically well and had a low detection limit (∼91.04 pM) and good selectivity.

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.6377

Publication date: July 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2012/00000012/00000007/art00077
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more