Skip to main content

High-Performance Polycrystalline Silicon Thin-Film Transistors with Two-Dimensional Location Control of the Grain Boundary via Excimer Laser Crystallization

Buy Article:

$105.00 plus tax (Refund Policy)

High-performance low-temperature polycrystalline silicon (Poly-Si) thin-film transistors (TFTs) have been fabricated with two-dimensional (2-D) location-controlled grain boundaries using excimer laser crystallization (ELC). By locally increased thickness of the amorphous silicon (a-Si) film that was served as the seed crystals with a partial-melting crystallization scheme, the cross-shaped grain boundary structures were produced between the thicker a-Si grids. The Poly-Si TFTs with one parallel and one perpendicular grain boundary along the channel direction could therefore be fabricated to reach excellent field-effect mobility of 530 cm2/V-s while the conventional ones exhibited field-effect mobility of 198 cm2/V-s. Furthermore, the proposed TFTs achieved not only superior electric properties but also improved uniformity as compared with the conventional ones owing to the artificially controlled locations of grain boundaries.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more