Skip to main content

Novel Palladium Germanide Schottky Contact for High Performance Schottky Barrier Ge MOSFETs and Characterization of Its Leakage Current Mechanism

Buy Article:

$105.00 plus tax (Refund Policy)

The leakage current mechanism of Palladium (Pd) germanide Schottky contact on n-type Ge-on- Si substrate is analyzed in depth. The electric field dependent analysis shows that the dominant leakage current mechanism is the Poole-Frenkel emission due to the existence of deep level traps in the depletion region of the Pd germanide/n-type Ge Schottky diode. The analysis of the dependence of leakage current on temperature also shows that the Poole-Frenkel emission and generation current are the dominant components below 100 °C and that the Schottky emission related to thermionic emission of majority carriers over a potential barrier is the main cause of this dominance at high temperature region.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 July 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more