Skip to main content

Enhanced Mobility of Neural Cells with a Transparent Electric Field Stimulator

Buy Article:

$105.00 plus tax (Refund Policy)

Mobility is one of the important characteristics of living cells. It also plays a significant role in therapeutic cell transplantation with target location specificity. To enhance cell mobility, a neural cell stimulator was assembled with graphenes, which are two-dimensional nanocarbon materials that form a transparent electrode over the cover glass in a cell culture dish. This transparent stimulator applies electrical field stimulation to the neural cells. The advantages of this new transparent electrical field stimulator (TEFS) with a graphene electrode include transparency, because few layered graphenes are optically transparent, and biocompatibility, because the cover glass is coated with laminin. In this paper, it is reported that constant electric field stimulation, which is at a specific strength, facilitates the mobility of a neural cell and makes the visibility of cellular behavior on the electrode much better than that of any other existing cell stimulator that has metal electrodes. The strength of the electrical field for stimulating cells varies from 4.5 mV/mm to 450 mV/mm. When continuous electric field stimulation was applied for 4 hours at the electric field strength of 45 mV/mm, the mobility of the neural cells was significantly enhanced compared to the control conditions, wherein there was no electric field stimulation. Thus, the feasibility of the TEFS with the nanothickness of graphene was tested to modulate the mobility of neural cells in vitro. The result suggests that electrical field stimulation could enhance neural cell alignment, cell-to-cell coupling, and networks, and may be applied to cell transplantation to boost therapeutic effectiveness.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more