Skip to main content

Galactosylation of Chitosan-Graft-Spermine as a Gene Carrier for Hepatocyte Targeting In Vitro and In Vivo

Buy Article:

$105.00 plus tax (Refund Policy)

Polyethyleneimine (PEI) has been described as a highly efficient gene carrier due to its efficient proton sponge effect within endosomes. However, many studies have demonstrated that PEI is toxic and associated with a lack of cell specificity despite high transfection efficiency. In order to minimize the toxicity of PEI, we prepared chitosan-graft-spermine (CHI-g-SPE) in a previous study. CHI-g-SPE showed low toxicity and high transfection efficiency. However, this compound also had limited target cell specificity. In the present study, we synthesized galactosylated CHI-g-SPE (GCS) because this modified GCS could be delivered specifically into the liver due to hepatocyte-specific galactose receptors. The DNA-binding properties of GCS at various copolymer/DNA weight ratios were evaluated by a gel retardation assay. The GCS copolymer exhibited significant DNA-binding ability and efficiently protected DNA from nuclease attack. Using energy-filtered transmission electron microscopy (EF-TEM), we observed dense spherical, nano-sized GCS/DNA complexes with a homogenous distribution. Most importantly, GCS was associated with remarkably low cytotoxicity compared to PEI in HepG2, HeLa, and A549 cells. Moreover, GCS carriers specifically delivered the gene-of-interest into hepatocytes in vitro as well as in vivo. Our results suggest that the novel GCS described here is a safe and highly efficient carrier for hepatocyte-targeted gene delivery.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more