Skip to main content

Effect of the Current Annealing (without and with Tensile Stress) on the Soft Magnetic Behaviour of Fe73.5–x (Co0.5Ni0.5) x Si13.5B9Nb3Cu1 Alloy Ribbons (x = 2.5, 5 and 10)

Buy Article:

$113.00 plus tax (Refund Policy)


Experimental data on microstructural (crystalline volume fraction, grain size) and magnetic (coercive field) properties in amorphous and nanocrystalline Fe73.5–x (Co0.5Ni0.5) x Si13.5B9Nb3Cu1 alloy ribbons (x = 2.5, 5 and 10) are presented. Nanocrystalline structure was developed by annealing the precursor amorphous ribbons by current annealing (CA) and stress-current-annealing (SA). Microstructural analysis of the treated ribbons using X-ray Diffraction showed a high content of amorphous phase in the bulk. In addition, substantial changes in the crystalline state such as grain size of the samples annealed at different conditions were observed. The alloy composition also affects greatly the grain size,: increasing the (Co,Ni) content leads to higher values of the average grain size. The evolutions of the coercive field with the two kinds of thermal treatment were analysed, allowing us to conclude that the addition of (Co,Ni) tends to reduce the magnetic softness character of the original material, while the treated SA samples show higher coercivities higher than those treated without by CA.

Document Type: Research Article


Publication date: 2012-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more