Skip to main content

CoCrPt/Ti Perpendicular Media onto Nanostructured Polymer Templates

Buy Article:

$113.00 plus tax (Refund Policy)


The fabrication and the study of the magnetic properties of CoCrPt/Ti nanostructures produced by sputtering onto ordered polymer templates are reported here. Samples exhibit a significant outof- plane component of the magnetization higher than for planar films, and it is stronger for the thicker CoCrPt films, and for nanostructured films with the shorter period ordering. The shape of the polymeric templates plays an important role for the determination of magnetic easy-axis. Magnetic Force Microscopy images of the samples show a single magnetic domain structure with high outof- plane anisotropy for the samples with longer ordering (480 nm period).

Document Type: Research Article


Publication date: 2012-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more