Skip to main content

Synthesis, Structure and Properties of Superhard Nanostructured Films Deposited by the C60 Ion Beam

Buy Article:

$105.00 plus tax (Refund Policy)

In this work, we present results on study of DLC, nanocomposite and nanocrystal nanographite films synthesized utilizing mass-separated beam of C60-ions with energy in range from 2 to 6 keV (energy dispersions ∼1 keV) and at Ts in the range of RT – 873 K. The dependence of the structure, mechanical and electrical properties from the ion energy and substrate temperature was revealed. We demonstrate a possibility to control the orientation of the base planes in the nanographite grains during the film growth. The dependence of mechanical properties of the films from the orientation of the base planes was defined. It is discussed a mechanisms of oriented growth for nanocrystal graphite. Possible applications of the textured nanocomposite and nanographite films are nanodevices, thin-filmed lithium batteries and field-emitter arrays.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2012-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more