@article {Pranaitis:2012:1533-4880:4717, title = "Energy Distribution of Trapping and Transport States in MDMO-PPV ([poly-(2-methoxyl, 5-(3,77dimethyloctyloxy)] Para Phenylenevinylene)", journal = "Journal of Nanoscience and Nanotechnology", parent_itemid = "infobike://asp/jnn", publishercode ="asp", year = "2012", volume = "12", number = "6", publication date ="2012-06-01T00:00:00", pages = "4717-4723", itemtype = "ARTICLE", issn = "1533-4880", eissn = "1533-4899", url = "https://www.ingentaconnect.com/content/asp/jnn/2012/00000012/00000006/art00039", doi = "doi:10.1166/jnn.2012.4954", author = "Pranaitis, M. and Kaukauskas, V.", abstract = "We have investigated charge carrier transport and trapping in the layers of [poly-(2-methoxyl, 5-(3,77dimethyloctyloxy)] para phenylenevinylene (MDMO-PPV). To reveal distribution of the trapping states the thermally stimulated current method was applied using the varying excitation conditions by light and applied voltage. To assure the selective excitation of the defect states close to the band gap edges, both extrinsic and intrinsic excitation by the light passed through the long-pass color filters with the cut-off energies ranging from 1.77 eV up to 3.1 eV was employed. Carrier transport conditions were varied by increasing applied electric field from 5 \texttimes 104 V/cm up to 6 \texttimes 105 V/cm. The effective thermal activation energy of material conductivity was dependent both on the spectral region of the exciting light and applied electric field. The superposition of several thermally activated processes, i.e., carrier generation from the trapping states and thermally stimulated mobility growth according to the Gaussian disorder model, was revealed. The energy distribution of the trapping state density was shown to follow the Gaussian distribution function. We had demonstrated that carrier trapping is effectively influenced by the extended defect states with the effective activation energy values ranging from 0.05 eV up to 0.15 eV with maximum located at about 0.070.08 eV. Moreover, deeper states with activation energies of 0.280.3 eV and 0.80.85 eV were identified. The results are direct indication by photo-thermo-electrical methods of distributed in energy trapping and transport states with the standard deviation of the density of states of about 0.015 eV.", }