Skip to main content

Mechanical Characterization of Co/Cu Multilayered Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)


The mechanical deformation properties of 〈110〉 Co/Cu multilayered nanowires were studied by Molecular Dynamics under uniaxial tensile and compressive stresses. The potential of the immiscible CoCu system was modeled by a second-moment tight-binding approximation. Stress-strain curves at different conditions were obtained and the elastic modulus and yield stress were analyzed. Both magnitudes are approximately independent of the strain rate, except at high values. They decrease linearly with increasing temperature. Below a volume-to-surface-area ratio, their values drastically increase and diverge from the bulk values. If the thickness of the Cu sublayers increases, the Young's modulus and yield stress decrease, although in a different way. The elastic modulus decreases linearly and the yield stress falls steeply whenever Cu is present in the nanowire, since the lattice distortion takes place firstly and fundamentally in Cu sublayers. The change in the axial stress at the interface is little significant on average and rather localized. Unlike, the transverse stress has a non-uniform distribution along the Cu sublayer, especially at the yield point. The Young's modulus and yield stress are larger in tension than in compression. Under tensile stress, nanowires slip via partial dislocation nucleation and propagation. Unlike, compressive deformation of nanowires takes place via both partial and full dislocations.

Document Type: Research Article


Publication date: June 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more