Monte Carlo Simulation of the Hysteresis Phenomena on Ferromagnetic Nanotubes

$113.00 plus tax (Refund Policy)

Buy Article:


In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.

Document Type: Research Article


Publication date: June 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more