Skip to main content

Facile Synthesis and Biosensing Application of Hybrid Zinc Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

Hybrid zinc nanoparticles were synthesized by adding thioglycolic acid (TGA) into a ZnO-particle synthesis procedure. Compared to the ZnO particles prepared without TGA, the hybrid nanoparticles are markedly different in their morphology, chemical composition, and growth kinetics. Moreover, they display colloidal stability and appropriate surface properties for bioconjugation. To demonstrate their biosensing application, the hybrid nanoparticles were conjugated and applied as biolabels or signal transducers in a sandwich immunoassay for mouse IgG. The immunoassay fluorescence signal was obtained by releasing zinc ions from these nanoparticle labels and further incubating the released zinc ions with zinc-sensitive fluorescence indicator Fluozin-3. The immunoassay presents a dynamic detection range from 10 pM to 1 nM.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more