Skip to main content

Properties of ZnO Thin Films Co-Doped with Hydrogen and Fluorine

Buy Article:

$113.00 plus tax (Refund Policy)


ZnO films co-doped with fluorine and hydrogen were prepared on Corning glass by radio frequency magnetron sputtering of ZnO targets with varying amounts of ZnF2 in H2/Ar gas mixtures of varying H2 content. The ZnO films' electrical, optical, and structural properties in combination with their compositional properties were investigated. A small addition of H2 to the sputtering gas caused a drastic increase of Hall mobility with a marginal increase in carrier concentration, indicating an effective passivation of grain boundaries due to hydrogenation. For further increase of H2 in sputter gas, the Hall mobility remained at a relatively constant level while the carrier concentration increased steadily. Most of the ZnO films co-doped with fluorine and hydrogen showed average transmittance higher than 83% in the 400–800 nm range, while the average absorption coefficients were lower than 600 cm−1, implying very low absorption loss in these films. It was discovered that the fabrication of ZnO films with a Hall mobility higher than 40 cm2/Vs and a very low absorption loss in the visible range is possible by co-doping hydrogen and fluorine.

Document Type: Research Article


Publication date: April 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more