Skip to main content

A Growth Mechanism of Porous Film Formed on Al in 0.6 M Oxalic Acid Electrolyte

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Understanding of mechanism of porous film formation is of fundamental importance for anodizing in general because, the onset of pore initiation terminates the barrier film growth process over the macroscopic metal surface. Several mechanisms have been proposed to explain pore formation. They include direct injection of aluminum ions into electrolyte and a field-assisted dissolution mechanism. High-resolution scanning electron microscopy of anodized surfaces and direct TEM of ion beam thinned films and ultrarmicrotomed film sections have been employed to gain further insight into the mechanism of initial porous film growth in 0.6 M oxalic acid. From detailed examination of the behavior of the xenon-tagged layer in the film during pore initiation and development in oxalic acid, the film structure of the barrier layer is found to be unstable during pore initiation and the instability of the film structure is possibly related to the field-assisted structure modification process.

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.5618

Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more