Skip to main content

Electrochemical Preparation of Ionic Liquid-Stabilized Palladium Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

We have successfully synthesized ionic liquid (IL)-stabilized palladium (Pd) nanoparticles (NPs) by electrochemical reduction. The particle size was controlled by adjusting the current density. Transmission electron microscopic (TEM) images showed that the average diameters of the Pd NPs were 2.4, 3.2, and 3.5 nm, depending on the synthetic conditions. Particle size increased as the current density and the length of the alkyl chain in the cation decreased. X-ray diffraction of the resulting NPs indicated that the particles had a crystalline structure. Overall, the results show that NPs can be finely tuned according to the kinds of ILs employed, as well as by electrochemical reduction.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 April 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more