Skip to main content

Fabrication of Dye-Sensitized Solar Cell (DSSC) Using Different Particle Sizes of TiO2 Deposited via Nano-Particle Deposition System (NPDS)

Buy Article:

$105.00 plus tax (Refund Policy)

TiO2 layers were fabricated using a nano-particle deposition system (NPDS) on transparent conductive oxide (TCO) glass for dye sensitized solar cells (DSSCs). Conventionally, TiO2 paste for working electrodes has been fabricated using paste type methods. The fabricated paste composed of a mixture of nano-sized TiO2 powders, binders and solutions is then painted on TCO glass. After drying, the TiO2 layer on TCO glass is sintered to make a path for electron transfer. TiO2 layers formed by this paste type method require numerous steps, which can be time consuming. In this study, TiO2 powders were sprayed directly on TCO glass using NPDS in order to simplify the fabrication steps. To improve porosity and produce scattering layers, commercial nanocrystalline TiO2 powders with different sizes were alternately deposited. Moreover, powders with different sizes were mixed and deposited on the TCO glass. The results indicate that the DSSCs with a TiO2 layer composed of different particle sizes had better cell performance than the cells assembled with single-sized TiO2 particles. Therefore, this study shows that a dry TiO2 coating process is possible for DSSC fabrication to improve its cell efficiencies, and this method can easily be applied on flexible substrates since NPDS is a room-temperature deposition process.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more