Skip to main content

Nano-Scale Texturing of Borosilicate Glasses Using CF4-Based Plasma Discharge for Application in Thin Film Solar Cells

Buy Article:

$105.00 plus tax (Refund Policy)

Random plasma treatment techniques were used as a texturing method to reduce the surface reflection of glass substrates in thin film solar cells. Various gas mixtures were used for the plasma discharge in an effort to examine the texturing mechanism. Using a plasma treatment comprising CF4/O2 and CF4/Ar with a gas flow ratio of 1 to 2, the surface reflectance could be decreased to 6.83% and 6.82%, respectively. The surface treatment was very effective with the use of a low RF power of 50 W and an optimal time of 5 min. It is considered that the optical characteristics of the glass substrate are highly correlated to its surface morphology which can be produced not only through nano-scale chemical reactions with radicals but also through ion flux bombardment.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more