Skip to main content

Synthesis of Ga-Doped ZnO Nanorods Using an Aqueous Solution Method for a Piezoelectric Nanogenerator

Buy Article:

$105.00 plus tax (Refund Policy)

Mechanical energy is a potential energy source for self-powered electronic devices. Due to their unique semiconducting and piezoelectric properties, wurtzite-structured nanomaterials have been considered as potential candidates for piezoelectric nanogenerators that convert mechanical energy into electricity. In the present work, we report on the growth of Ga-doped ZnO (GZO) nanorods and investigate the performance of nanogenerators fabricated from undoped ZnO (UZO) nanorods, low Ga-doped ZnO (LGZO) nanorods, and high Ga-doped ZnO (HGZO) nanorods. A nanogenerator integrated with LGZO nanorods exhibited a current density of 1.2 μA/cm2, an enhancement over the 0.4 μA/cm2 and 0.7 μA/cm2 current densities of nanogenerators integrated with UZO and HGZO nanorods, respectively.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more