Skip to main content

Formation of Silicon Sheet on a Rotating Substrate

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A spin casting process to fabricate polycrystalline silicon sheets for use as solar cell wafers is presented and the parameters that control the sheet thickness are investigated. The computational model for the spin casting is proposed in order to understand the melt flow and solidification behaviors in the mold. The effect of the rotating speed of the mold and substrate morphology on the silicon sheets is studied via computer simulations, and the simulation results are compared with the experimental results. The numerical study of the fluidity and solidification behavior of the silicon predicted that the formation of rectangular sheets via spin casting is feasible, and the subsequent experiment confirmed this prediction. Using a square mold, rectangular silicon sheets can be produced under appropriate experimental conditions. Microstructural analyses verified the presence of long columnar structures on the sheets.

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.5569

Publication date: April 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2012/00000012/00000004/art00046
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more