Skip to main content

Chemical-Mechanical Planarization Aided Dimple Etching for Self Alignment

Buy Article:

$113.00 plus tax (Refund Policy)


Through silicon via (TSV) technology is becoming a mainstream method of building 3-dimensional integrated circuits (3D IC). In particular, TSV Cu CMP is a critical process to remove excess Cu and makes a planar surface which requires a removal rate higher than 5 μm/min and a dishing lower than 0.3 μm. This paper focuses on the development of a new self-alignment method using dimples on the TSV Cu back surface. We tried to find an application potential of a bump-dimple structure for self alignment using a pretest tool of a solder ball array structure. Chemical-mechanical planarization (CMP) aided dimple etching is carefully studied as a key solution for deep and uniform dimple formation. The experiment shows that CMP is an excellent process to generate a clean oxide surface and a clear dishing on the Cu TSV, resulting in a seed for etching. Finally, etching realizes a uniform dimple depth of 7 μm to 9 μm in spite of changes of via diameter from 10 μm to 50 μm after only 15 sec etching.

Document Type: Research Article


Publication date: April 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more