Skip to main content

Size Effects on the Stabilization and Growth of Tetragonal ZrO2 Crystallites in a Nanotubular Structure

Buy Article:

$113.00 plus tax (Refund Policy)


The size effects on the stabilization of ZrO2 polymorphs in nanoscale and the growth behavior of their crystallites in 1-D nanotubular structures were investigated. Polycrystalline nanotubular structures of ZrO2 with tetragonal nanocrystallites were fabricated using nanoporous polycarbonate (PC) templates and atomic layer deposition (ALD). The as-prepared ZrO2 nanotubes showed polycrystalline structures of stabilized tetragonal polymorphs at room temperature. The wall thickness of the ZrO2 nanotubes was well controlled by the number of ALD cycles. Faster growth of the tetragonal nanocrystallites was observed in the nanotubes with a 50 nm outer diameter, than those of 200 nm. The Gibbs–Thompson relation can be used to explain the observed nanosize effects on the growth of the tetragonal ZrO2 nanocrystallites.

Document Type: Research Article


Publication date: April 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more