Skip to main content

Synergy Derived by Combining Graphene and Carbon Nanotubes as Nanofillers in Composites

Buy Article:

$113.00 plus tax (Refund Policy)


Both one-dimensional carbon nanotubes as well as two-dimensional graphene sheets have been extensively investigated as nanofillers in composites. However there are very few reports on their combined use in composite materials. Here we report the mechanical properties including Young's modulus, tensile strength and fatigue properties of an epoxy polymer reinforced with various combinations of graphene and carbon nanotube fillers- i.e., nanotubes alone, graphene alone and a mixture of graphene and nanotubes. We find that at low nanofillers loadings (> 0.1% weight), the graphene fillers performed better than both singlewalled as well as multiwalled carbon nanotubes. However, interestingly it was the combination of carbon nanotubes with graphene that yielded the greatest improvement in mechanical properties. Optical microscopy of thin micro-tomed slices of the composites indicated that in the presence of the nanotubes the graphene sheets appear to have aggregated into chains forming a network structure. Such long range ordering of the nanofillers is very unusual in a nanocomposite system and is likely responsible for the enhanced mechanical properties.

Document Type: Research Article


Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more