Skip to main content

Self-Assembled Diphenylalanine Nanowires for Cellular Studies and Sensor Applications

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by the peptide nanostructures; furthermore we studied the properties of PNWs by investigating their influence on the electrochemical behavior of gold electrodes. The PNWs were functionalized with polypyrrole (PPy) by chemical polymerization, therefore creating conducting peptide/polymer nanowire structures vertically attached to a metal electrode. The electroactivity of such structures was characterized by cyclic voltammetry. The PNW/PPy modified electrodes were finally used as amperometric dopamine sensors, yielding a detection limit of 3,1 μM.

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.4534

Publication date: April 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2012/00000012/00000004/art00018
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more