Skip to main content

Sensitive and Selective Detection of Mercury (II) Based on the Aggregation of Gold Nanoparticles Stabilized by Riboflavin

Buy Article:

$105.00 plus tax (Refund Policy)

Gold nanoparticles (AuNPs) can be stabilized by riboflavin against tris buffer-induced aggregation. However, in the presence of mercury (II) (Hg2+), riboflavin can be released from the AuNPs surface and the riboflavin-Hg2+ complex formed, leading to the aggregation of AuNPs in tris buffer. The aggregation extent depends on the concentration of Hg2+. Based on the aggregation extent, a simple and sensitive method of determining Hg2+ is developed. The method enables the detection of Hg2+ over the concentration range of 0.02-0.8 μM, with a detection limit (3σ) of 14 nM, and shows excellent selectivity for Hg2+ over other metal ions (Cu2+, Co2+, Cd2+, Pb2+, Mg2+, Zn2+, Ag+, Ce3+, Ca2+, Al3+, K+). More importantly, the method avoids complicated surface modifications and tedious separation processes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more