@article {Pinto:2012:1533-4880:2891, title = "Development, Characterization and In Vitro Evaluation of Single or Co-Loaded Imatinib Mesylate Liposomal Formulations", journal = "Journal of Nanoscience and Nanotechnology", parent_itemid = "infobike://asp/jnn", publishercode ="asp", year = "2012", volume = "12", number = "3", publication date ="2012-03-01T00:00:00", pages = "2891-2900", itemtype = "ARTICLE", issn = "1533-4880", eissn = "1533-4899", url = "https://www.ingentaconnect.com/content/asp/jnn/2012/00000012/00000003/art00166", doi = "doi:10.1166/jnn.2012.5703", author = "Pinto, Ana Catarina and {\^A}ngelo, Susana and Moreira, Jo{\~a}o Nuno and Sim{\~o}es, S{\’e}rgio", abstract = "Mitoxantrone-based combinations are a standard palliative treatment in hormone-refractory prostate cancer (HRPC) but with no survival benefit. Imatinib has shown preclinical activity against HRPC although minimal clinical therapeutic efficacy. Our previous In Vitro studies demonstrated that simultaneous combination of imatinib with mitoxantrone yielded additive growth inhibition effects against PC-3 cell line. The main aim of the work was to develop novel liposomal formulations comprising imatinib co-encapsulated with mitoxantrone, by different loading methods and experimental conditions, in order to achieve the highest drug loading and maximum physical stability. In the optimized formulations, imatinib and mitoxantrone were actively co-loaded by means of a (NH4)2SO4 trans-membrane gradient. Encapsulation efficiency, mean size diameter and drug retention in storage and in biological conditions were characterized. Our study presented for the first time an active loading method for imatinib and suggests that the optimized liposomal formulation co-encapsulates both drugs with high encapsulation efficiency (>95%), shows enhanced drug retention under tested conditions and delivers a drug:drug ratio capable of improving tumor cell growth inhibition with a mitoxantrone dose reduction of 2.6-fold as compared to single liposomal formulation. Therefore, our nanotechnology-based drug combined platform may constitute a promising strategy in prostate cancer therapy.", }