If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Synthesis of Nanocrystals of Gadolinium Carbonate by Reaction Crystallization

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The formation of nano-sized crystals of gadolinium carbonate via reaction crystallization was studied in a semi-batch crystallizer using gadolinium chloride and ammonium hydrogen carbonate as the reactants. The gadolinium carbonate crystals were formed by the aggregation of primary particles sized about 5 nm. Thereby, the crystallization parameters acting directly on the aggregation of the primary particles, such as the reactant concentrations, non-stoichiometry of the reactants, solution pH, acoustic energy, and agitation speed, were mechanistically investigated. As such, increasing the reactant concentrations enhanced the crystal size due to higher nucleation of the primary particles for the aggregation. Non-stoichiometric reactant concentrations resulted in a significant reduction of the crystal size, due to the adsorption of the excess species on the primary particles. Similarly, the surface charge of the primary particles depended on the solution pH. Thus, the crystal size was reduced when the pH deviated from the neutral point. The acoustic cavitation of the ultrasound was much more effective than the turbulent fluid motion of the agitation in inhibiting the primary particle aggregation. Thus, the crystal size was remarkably reduced, even at a low acoustic energy of 6 watts.

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.5678

Publication date: March 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more