Skip to main content

Self-Assembled-Monolayers (SAMs) Modified Template Synthesis and Characterization of SrTiO3 Nanotube Arrays

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A self-assembled-monolayers (SAMs) modified anodic aluminum oxide (AAO) membranes were used to generate crystalline strontium titanate (SrTiO3) nanotube arrays, which have been characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), coupled with electron diffraction analysis. The possible formation mechanism can be explained by the induced nucleation effect of the functional headgroups in the SAMs.

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.5188

Publication date: March 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2012/00000012/00000003/art00047
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more