Skip to main content

Nano-Scale Precipitates Formed in Cu–Co Based Alloys and Their Magnetic Properties

Buy Article:

$113.00 plus tax (Refund Policy)


The microstructural evolutions of nano-scale magnetic Co particles formed in Cu–Co base alloys have been investigated on isothermal annealing at 973 K, using transmission electron microscopy (TEM). After the solution treatment and short annealing, nano-scale magnetic particles appeared randomly in the Cu-rich matrix. With increasing the isothermal annealing time, however, pairs and sometimes more than two of Co precipitates were linearly arranged along 〈100〉 directions in Cu–Co alloys. On the other hand, such linear arrangements of precipitates were extended in Cu–Ni–Co alloys. Co precipitates were cubic in the coherent stage and octahedral in incoherent stage of precipitation in binary alloys, while the precipitates rendered rectangular shapes even in the incoherent stage in Cu–Ni–Co. The magnetic properties of the specimens have also been measured at the similar conditions, with the superconducting quantum interference device (SQUID) magnetometer. The present study revealed that coersive forces of the specimens were correlated with the microstructural evolution occurring during the isothermal annealing.


Document Type: Research Article


Publication date: February 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more