Skip to main content

Effect of Collector Speed and Flow Rate on Morphology of Er Doped TiO2 Nanofibers

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The 0.5 mol% Er3+ doped TiO2 (Er3+-TiO2) nanofibers were synthesized by a sol–gel derived electrospinning and subsequent calcination for 3 h at 500 °C in air. The calcined fibers were examined to evaluate the effect of collector speed and flow rate on morphology of the fibers. The dynamic viscosity and surface tension of precursor solution were 34 cP and 22.7 mN/m, respectively. The Er3+-TiO2 nanofibers were electrospun horizontally on the drum rotated at 100∼500 rpm and flow rate of 0.2∼0.5 mL/h under a DC voltage of 10 kV. The grounded collector is a stainless mandrel placed 12 cm away from the tip of the needle. Beads were observed for the nanofibers prepared at flow rates from 0.2 mL/h to 0.5 mL/h when the collector speed was 100 rpm. The nanofibers increased in diameter slightly from 150 nm to 190 nm as the flow rate was raised from 0.2 mL/h to 0.5 mL/h. No beads were found at the collector speed of above 300 rpm when the flow rate was 0.2 mL/h. The optimized flow rate and collector speed of the nanofibers were determined to be in the range of 0.2∼0.3 mL/h and 300∼400 rpm, respectively. Uniform, smooth and continuous fibers with diameters of 150 to 170 nm were detected. Crystallite size determined by the Scherrer formula was about 6 nm. It can be concluded that the collector speed and the flow rate are influential on the morphology of the Er3+-TiO2 nanofibers. The Er3+-TiO2 nanofibers, prepared at 0.2 mL/h and 300 rpm, had typical absorption peaks located at 490, 523 and 654 nm, corresponding to the transitions from 4I15/2 to 4F7/2, 2H11/2 and 4F9/2, respectively. The Er3+-TiO2 nanofibers showed enhanced photoresponses under visible light.

Keywords: COLLECTOR SPEED; ELECTROSPINNING; ER3+ DOPED TIO2; FLOW RATE; NANOFIBERS; PHOTOACTIVITY; VISIBLE LIGHTS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.4608

Publication date: February 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2012/00000012/00000002/art00146
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more