Skip to main content

Effects of Process Conditions on the Properties of Silicon Nanoparticles Synthesized by Gas Phase Reactions Using Inductive Coupled Plasma

Buy Article:

$113.00 plus tax (Refund Policy)


Silicon nanoparticles were synthesized by passing monosilane through a quartz tube wrapped with Inductive Coupled Plasma (ICP) coil. Microstructures of synthesized silicon nanoparticles were investigated with various process conditions. To research the effects of process parameters on the properties of nanoparticles, we verified the partial pressure of monosilane, the plasma power and the working pressure. The highly crystalline silicon nanoparticles were only achieved at the proper partial pressure of the reactive gas and plasma power. Partial pressure determined not only the particle size but also the crystallinity of the nanoparticles. The plasma power was controlled from 50 to 100 W which determined not the particle size but the crystallinity of nanoparticles. Especially, too low a power resulted in amorphous particles with an average sizes of 5.25 nm. As the working pressure increased, the amount of produced nanoparticles linearly increased and the maximum production yield was at 76 mg/hr. Controlling those parameters, we achieved monodispersed single crystalline silicon nanoparticles with an average diameter of 7.52 nm. Silicon nanoparticles in this study can be applied to light absorbing material for solar cells and the wavelength down-converter material of Light Emitting Diode (LED).


Document Type: Research Article


Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more