Skip to main content

One Step Synthesis of Rutile TiO2 Nanoparticles at Low Temperature

Buy Article:

$105.00 plus tax (Refund Policy)

Sphere-like rutile TiO2 nanocrystals have been synthesized by sol–gel method followed by hydrolysis of titanium tetrachloride in deionized water in the presence of ammonium hydroxide as hydrolysis catalyst. The as-prepared TiO2 nanoparticles have single rutile phase with average diameter ∼26.4 nm. The results show that the temperature has a great influence on the particle size distribution and also crystalline phase (rutile) of TiO2 nanoparticles is consistent with the temperature. Characterization of the as-prepared nanocrystalline powder was carried out by different techniques such as powder X-ray diffraction (XRD), field emission transmission electron microscopy (FE-TEM) and Raman spectroscopy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more