Skip to main content

Suppressed Recombination in Quantum Dot-Sensitized Solar Cells with Blocking Layers on FTO Substrates

Buy Article:

$113.00 plus tax (Refund Policy)


The compact and thin TiO2 blocking layers (c-TiO2) were formed on F-doped SnO2 (FTO) substrate in quantum dots-sensitized solar cells (QSSCs) by chemical deposition. The c-TiO2 layers induced indirect contact between electrolyte and FTO electrode, which reduced leakage in QSSCs. The QSSCs showed power conversion efficiency (Eff) of 3.85% in the presence of c-TiO2 layers which leads to 21% improved compared to that without c-TiO2 layers (Eff = 3.18%). The presence of the c-TiO2 layers in QSSCs also improved the stability under illumination.


Document Type: Research Article


Publication date: February 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more