Skip to main content

Effects of Pt Junction on Electrical Transport of Individual ZnO Nanorod Device Fabricated by Focused Ion Beam

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The electrical transport of individual ZnO nanorod devices manufactured by focused ion beam (FIB) was investigated by the direct measurement of electrical resistance at electrode junctions of cross-sectioned devices using two nanoprobes. The cathodoluminescence (CL) measurements were also performed to evaluate the crystallinity at the center and edge of the cross-sectioned ZnO nanorods. The electrical transport of the individual ZnO nanorod device depends strongly on the crystallinity of the ZnO nanorod itself and the carbon contents at Pt junctions. The ZnO–Au junction of the device acted as the fastest path for electrical transport.

Keywords: ELECTRICAL TRANSPORT; FIB; NANOROD; ZNO

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.4696

Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more