Skip to main content

Surface Modified TiO2 Nanostructure with 3D Urchin-Like Morphology for Dye-Sensitized Solar Cell Application

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Three-dimensional (3D) urchin-like rutile TiO2 powders were synthesized by a mild hydrothermal method without any templates. An individual urchin-like TiO2 powder consists of self-assembled nanorods with a length of about 150 nm and width of about 10 nm. Additionally, the urchin-like TiO2 nanopowders were coated with an ultra-thin ZnO layer in order to modify the surface properties of the nanopowders, and the ZnO layer was confirmed by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analysis. The ZnO-modified TiO2 was used as a photoelectrode of a dye-sensitized solar cell (DSSC) and the solar cell performances were investigated. In comparison with bare TiO2, ZnO-modified TiO2 improved the photovoltaic performances, i.e., energy conversion efficiency, open circuit voltage, and short circuit current were increased. The higher DSSC performance of ZnO-modified TiO2 was attributed to its higher dye loading and lower charge recombination rate.

Keywords: DYE-SENSITIZED SOLAR CELL; RUTILE TIO2; SURFACE MODIFICATION; THREE-DIMENSIONAL; ZNO

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2012.4635

Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more