Skip to main content

Iron Doped Hexagonal ErMnO3: Structural, Magnetic, and Dielectric Properties

Buy Article:

$113.00 plus tax (Refund Policy)


The single phase ErFe x Mn1−x O3 (0 ≤ x ≤ 0.15) compounds were synthesized by the solid-state reaction method. The doping effects on the crystal structural, magnetic, thermal, and dielectric properties were systematically investigated. The XRD patterns show all samples crystallize in the hexagonal structure with P63cm space group. The lattice parameters a and c first decrease with doping, which is followed by a subsequent increase at higher doping levels. Although both the Fe3+ and Mn3+ ions remain stable in high spin trivalent states in all samples, the magnetization is weakened with increasing Fe contents. The heat capacity data shows the antiferromagnetic transition slightly shifts from 77 K for ErMnO3 to 80 K for ErFe0.15Mn0.85O3, which can not be observed in the magnetic susceptibility data. The real part of complex impedance of these samples rises as the doping level increases, indicating the enhancement of insulativity of doped samples.


Document Type: Research Article


Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more