Skip to main content

Inverted Organic Solar Cells with ZnO Nanowalls Prepared Using Wet Chemical Etching in a KOH Solution

Buy Article:

$105.00 plus tax (Refund Policy)

We report on the photovoltaic (PV) performances of inverted organic solar cells (IOSCs) that were fabricated from PCBM:P3HT polymer with a ZnO thin film and ZnO nanowalls as electron transport and hole block layers. ZnO thin film on ITO/glass substrate was deposited using a simply aqueous solution route. ZnO nanowall structures were obtained via wet chemical etching of ZnO thin films in a KOH solution. The power conversion efficiency (PCE) of the IOSC with ZnO nanowalls was significantly improved by 44% from 1.254% to 1.811% compared to that of the IOSC with ZnO thin film. The short circuit current in IOSCs fabricated with the ZnO nanowalls was increased mainly due to the increase in the charge transport interface area, as a result of enhancement in the PCE. This work suggests a method for fabricating efficient PV devices with a larger charge transport area for future prospects.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ELECTRON TRANSPORT LAYER; INVERTED ORGANIC SOLAR CELL; NANOWALL; ZNO

Document Type: Research Article

Publication date: 2012-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more