Skip to main content

Metallicity and Ferromagnetism in Nanosystem of Charge Ordered Nd0.5Sr0.5MnO3

Buy Article:

$113.00 plus tax (Refund Policy)


The fascinating phenomenon of destabilization of charge/orbital order in Nd0.5Sr0.5MnO3 with the reduction of grain size is critically investigated. Based on our magnetic and transport experiments followed by a theoretical analysis, we analyze various possible mechanisms and try to delineate a universal scenario behind this phenomenon. We revisit this issue carefully and discuss various evidences from experiments in nano and bulk manganites on the absence of correlation between size reduction and pressure effects on manganites. We propose a phenomenological model based on enhanced surface disorder to explain the appearance of weak ferromagnetism and metallicity in nanosize Nd0.5Sr0.5MnO3 system. All evidence seems to suggest that the transport is mediated through the surface via enhanced density of states in the nanometric grains. We provide theoretical support for this by performing an ab-initio electronic structure calculation as well as from a recent numerical simulation and argue that the mechanism is likely to be general in all nanosize charge ordered manganites.


Document Type: Research Article


Publication date: February 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more