If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Composition Dependence of Magnetocaloric Effect in Pr0.6Ca0.4Mn1−x Cr x O3 (x = 0.02–0.08)

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We report the effect of varying Cr content on magnetic and magnetocaloric properties of Pr0.6Ca0.4Mn1−x Cr x O3 samples (x = 0, 0.02, 0.04, 0.06 and 0.08). While the parent compound (x = 0) is a charge ordered and antiferromagnetic insulator, Cr doped compounds are ferromagnetic metals with nearly same Curie temperature (T C ≈ 140 K). We find unusual field-induced metamagnetic transition above TC in x = 0.02 and 0.04 which is absent in x = 0.06 and 0.08. It is suggested that the paramagnetic phase in these compounds is inhomogeneous with coexistence of nano-size ferromagnetic clusters and short range charge ordered clusters. Field induced growth of ferromagnetic nano-clusters and destruction of short-range charge ordering leads to the observed metamagnetic transition, which results in large magnetic entropy change of −ΔS M = 5.043, 6, 5.509 and 4.375 J/kg K under ΔH = 5 T, for x = 0.02, 0.04, 0.06 and 0.08, respectively. In addition, large relative cooling power (RCP) found in these materials (327.384, 286.36, 272.22 and 279.936 J/kg) makes it interesting for practical applications. Our study suggests that creation of ferromagnetic nano-clusters in the paramagnetic phase by Mn-site doping in charge ordered compounds provides an alternative approach to achieve high ΔS M and RCP values.

Keywords: MAGNETIZATION; MAGNETOCALORIC EFFECT; MANGANITES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2012.5390

Publication date: January 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more